Matemática básica Ejemplos

Simplificar ((3k^2-2k-1)/(3k^2+14k+11))/((9k^2-1)/(3k^2+8k-11))
Paso 1
Multiplica el numerador por la recíproca del denominador.
Paso 2
Factoriza por agrupación.
Toca para ver más pasos...
Paso 2.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 2.1.1
Factoriza de .
Paso 2.1.2
Reescribe como más
Paso 2.1.3
Aplica la propiedad distributiva.
Paso 2.1.4
Multiplica por .
Paso 2.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 2.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 2.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 2.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 3
Factoriza por agrupación.
Toca para ver más pasos...
Paso 3.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 3.1.1
Factoriza de .
Paso 3.1.2
Reescribe como más
Paso 3.1.3
Aplica la propiedad distributiva.
Paso 3.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 3.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 3.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 3.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 4
Factoriza por agrupación.
Toca para ver más pasos...
Paso 4.1
Para un polinomio de la forma , reescribe el término medio como una suma de dos términos cuyo producto es y cuya suma es .
Toca para ver más pasos...
Paso 4.1.1
Factoriza de .
Paso 4.1.2
Reescribe como más
Paso 4.1.3
Aplica la propiedad distributiva.
Paso 4.2
Factoriza el máximo común divisor de cada grupo.
Toca para ver más pasos...
Paso 4.2.1
Agrupa los dos primeros términos y los dos últimos términos.
Paso 4.2.2
Factoriza el máximo común divisor (MCD) de cada grupo.
Paso 4.3
Factoriza el polinomio mediante la factorización del máximo común divisor, .
Paso 5
Simplifica el denominador.
Toca para ver más pasos...
Paso 5.1
Reescribe como .
Paso 5.2
Reescribe como .
Paso 5.3
Dado que ambos términos son cuadrados perfectos, factoriza con la fórmula de la diferencia de cuadrados, , donde y .
Paso 6
Simplifica los términos.
Toca para ver más pasos...
Paso 6.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.1.1
Cancela el factor común.
Paso 6.1.2
Reescribe la expresión.
Paso 6.2
Cancela el factor común de .
Toca para ver más pasos...
Paso 6.2.1
Factoriza de .
Paso 6.2.2
Factoriza de .
Paso 6.2.3
Cancela el factor común.
Paso 6.2.4
Reescribe la expresión.
Paso 6.3
Multiplica por .
Paso 7
Eleva a la potencia de .
Paso 8
Eleva a la potencia de .
Paso 9
Usa la regla de la potencia para combinar exponentes.
Paso 10
Suma y .